Перспективные типы батарей

Удельная энергоемкость современных литий-ионных батарей достигает 200 Вт*ч/кг. В среднем этого хватает лишь на 150 километров пробега без подзарядки, что не идет ни в какое сравнение с пробегом на одной заправке автомобилей с обычным ДВС. Чтобы электромобили стали массовыми, они должны иметь сопоставимый пробег. Для этого нужно довести удельную энергоемкость батарей хотя бы до 350-400 Вт*ч/кг. Описанные ниже перспективные типы батарей смогут ее обеспечить, хотя в каждом случае есть свои "но".

Литий-серные батареи

Сравнительные характеристики Li-S и Li-ion батарей

Литий-серные батареи отличает большая удельная емкость, которая является следствием того, что в процессе химической реакции каждая молекула отдает не один, а два свободных электрона. Их теоретическая удельная энергия составляет 2600 Вт*ч/кг. Кроме того, такие батареи существенно дешевле и безопаснее литий-ионных.

Базовая Li-S батарея состоит из литиевого анода, серно-углеродного катода и электролита, через который проходят ионы лития. При разряде происходит химическая реакция, в ходе которой литий анода превращается в сульфид лития, осаждающийся на катоде. Напряжение батареи составляет от 1,7 до 2,5 В, в зависимости от степени разряда батареи. Полисульфиды лития, образующиеся в ходе реакции, оказывают влияние на вольтаж батареи.

Химическая реакция в батарее сопровождается рядом негативных побочных явлений. Когда сера катода поглощает ионы лития из электролита, образуется сульфид лития Li2S, который осаждается на катоде. При этом его объем увеличивается на 76%. При заряде происходит обратная реакция, приводящая к уменьшению размеров катода. Вследствие этого катод испытывает значительные механические перегрузки, приводящие к его повреждению и потере контакта с токоприемником. Кроме того, Li2S ухудшает электрический контакт в катоде между серой и углеродом (путь, по которому движутся электроны) и препятствует протеканию ионов лития к поверхности серы.

Другая проблема связана с тем, что в процессе реакции между серой и литием Li2S образуется не сразу, а через серию превращений, в ходе которых образуются полисульфиды (Li2S8, Li2S6 и др.). Но если сера и Li2S нерастворимы в электролите, то полисульфиды – наоборот, растворяются. Это приводит к постепенному уменьшению количества серы на катоде. Еще одна неприятность - появление шероховатостей на поверхности литиевого анода при прохождении больших разрядных и зарядных токов. Все это, вместе взятое, приводило к тому, что такая батарея выдерживала не более 50-60 циклов разряда-заряда и делало ее непригодной для практического использования.

Нанокомпозитный катод Li-S батареи

Однако последние разработки американцев из Национальной лаборатории им. Лоуренса в Беркли позволили преодолеть эти недостатки. Ими создан уникальный катод из нанокомпозитного материала (оксида графена и серы), целостность которого поддерживается с помощью эластичного полимерного покрытия. Поэтому изменение размеров катода в ходе разряда-заряда не приводит к его разрушению. Для защиты серы от растворения применяется ПАВ (поверхностно активное вещество). Так как ПАВ является катионным (т.е. притягивается к поверхности слоя серы), оно не препятствует литиевым анионам реагировать с серой, но не позволяет образовавшимся при этом полисульфидам растворяться в электролите, удерживая их под своим слоем. Также разработан новый электролит на основе ионной жидкости, в которой не растворяются полисульфиды. Ионная жидкость и намного безопаснее - она не горит и почти не испаряется.

В результате всех описанных нововведений значительно повышается производительность батареи. Ее начальная удельная энергия составляет 500 Вт*ч/кг, что более чем в два раза превышает показатель Li-ion батарей. После 1500 20-часовых циклов разряда-заряда (С=0,05) ее удельная энергия снизилась до уровня свежей Li-ion батареи. После 1500 1-часовых циклов (С=1) снижение составило 40-50%, но батарея по-прежнему сохранила работоспособность. Когда же батарею испытывали при большой мощности, подвергая 10-минутному циклу разряда-заряда (С=6), то даже после 150 таких циклов ее удельная энергия превышала удельную энергию свежей Li-ion батареи.

Предполагаемая цена такой Li-S батареи не превысит 100$ за каждый кВт*ч емкости. Многие инновации, предложенные командой исследователей из Беркли, могут быть использованы и для улучшения существующих Li-ion батарей. Для создания практической конструкции LiS батареи разработчики ищут партнёров, которые профинансируют окончательную ее доводку.

Литий-титанатовые батареи

Самая большая проблема современных литий-ионных батарей – это низкая эффективность, связанная в первую очередь с тем, что материалы, хранящие энергию, занимают только 25% объема аккумулятора. Остальные 75% приходятся на инертные материалы: корпус, проводящие пленки, клей и т.д. Из-за этого современные батареи слишком громоздкие и дорогостоящие. Новая технология предполагает значительное сокращение "бесполезных" материалов в конструкции аккумулятора.

Новейшие литий-титанатовые батареи помогли преодолеть еще один недостаток Li-ion аккумуляторов – их недолговечность и длительность подзарядки. В ходе исследований было обнаружено, что при зарядке большими токами ионы лития вынуждены «продираться» между микропластинками графита, тем самым постепенно разрушая электроды. Поэтому графит в электродах заменили структурами из наночастиц титаната лития. Они не мешают движению ионов, что в итоге привело к фантастическому увеличению срока службы – более 15000 циклов в течение 12 лет! Время зарядки с 6-8 часов сокращается до 10-15 минут. Дополнительные преимущества – термостабильность и меньшая токсичность.

По расчетам экспертов, новые батареи будут иметь плотность энергии, в два раза превышающую самые лучшие показатели современных литий-ионных аккумуляторов. Таким образом, при неизменной дальности хода электромобиля его аккумулятор будет легче, а при той же массе – значительно увеличится запас хода. Если удастся запустить новую батарею в серию, то пробег компактных электромобилей (которые не могут оснащаться большой тяжелой батареей) в среднем возрастет с 150 км до 300 км на одной зарядке. При этом новые батареи будут наполовину дешевле нынешних - всего 250 долл. за кВт/ч.

Литий-воздушные батареи

Схема работы литий-воздушного аккумулятора

Технологии не стоят на месте, и ученые уже работают над созданием практической конструкции литий-воздушного (LiO2) аккумулятора. Его теоретическая энергетическая емкость выше в 8-10 раз, чем у литиево-ионного. Для того чтобы уменьшить вес батареи, сохранив при этом, или даже увеличив ее емкость, ученые предложили радикальное решение – отказ от традиционного катода: литий будет взаимодействовать непосредственно с кислородом из воздуха. Благодаря каталитическому воздушному катоду предполагается не просто увеличить энергоемкость аккумулятора, но и уменьшить почти во столько же раз его объем и вес.

Для массового производства литий-воздушная технология требует решения множества технических и научных задач, среди которых создание эффективного катализатора, литиевого анода и стабильного твердого электролита, способного работать при низких температурах (до -50C). Кроме того, нужно разработать технику нанесения катализатора на поверхность катода, создать мембрану, которая бы предотвращала проникновение кислорода на литиевый анод, а также разработать методы изготовления специальных пористых электродов.